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Chapter 2 Overview: Anti-Derivatives
As noted in the introduction, Calculus is essentially comprised of four operations.

Limits

Derivatives

Indefinite Integrals (or Anti-Derivatives)
Definite Integrals

There are two kinds of Integrals--the Definite Integral and the Indefinite Integral.
The Definite Integral was explored first as a way to determine the area bounded by
a curve rather than bounded by a polygon.

We know, from Geometry, how to find the exact area of various polygons, but
geometry never considered figures where one or more sides is not made of a line
segment. Here we want to consider a figure where one side is the curve y=f(x) and
the other sides are the x-axis and the lines x = @ and x = b.

2.5 e

y=Ff(x)

1.3

15 ' 2 ' 25 z
b

Qs

As we can see above, the area can be approximated by rectangles whose height is
the y value of the equation and whose width we will call Ax. The more rectangles
we make, the better the approximation. The area of each rectangle would be



f(x)- Ax and the total area of n rectangles would be Z f (xl.) -Ax. If we could
i=1

make an infinite number of rectangles (which would be infinitely thin), we would
have the exact area. The rectangles can be drawn several ways--with the left side
at the height of the curve (as drawn above), with the right side at the curve, with
the rectangle straddling the curve, or even with rectangles of different widths. But
once they become infinitely thin, it will not matter how they were drawn--they will
have no width and a height equal to the y-value of the curve.

We can make an infinite number of rectangles mathematically by taking the Limit
as n approaches infinity, or

Lim3.f(x)-Ax.
This limit is rewritten as the Definite Integral:

ij(x) dx

b is the "upper bound" and a is the "lower bound," and would not mean much if it
were not for the following rule. The symbol I comes from the 17th century S and

stands for sum.

For a long time in the mathematical world we did not know that integrals and
derivatives were connected. In the mid-1600s Scottish mathematician James
Gregory published the first proof of what is now called the Fundamental Theorem
of Calculus, changing the math world forever. The Indefinite Integral is often
referred to as the Anti-Derivative, because, as an operation, it and the Derivative
are inverse operations (just as squares and square roots, or exponential and log
functions). In this chapter, we will consider how to reverse the differentiation
process. In the next chapter, we will explore the definite integral.
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f(x)- Ax and the total area of n rectangles would be Y f (xl.) -Ax. If we could
i1

make an infinite number of rectangles (which would be infinitely thin), we would
have the exact area. The rectangles can be drawn several ways--with the left side
at the height of the curve (as drawn above), with the right side at the curve, with
the rectangle straddling the curve, or even with rectangles of different widths. But
once they become infinitely thin, it will not matter how they were drawn--they will
have no width and a height equal to the y-value of the curve.

We can make an infinite number of rectangles mathematically by taking the Limit
as n approaches infinity, or

nLi@;f(xi)'Ax'
This limit is rewritten as the Definite Integral:

ij(x) dx

b is the "upper bound" and a is the "lower bound," and would not mean much if it
were not for the following rule. The symbol I comes from the 17th century S and

stands for sum.

For a long time in the mathematical world we did not know that integrals and
derivatives were connected. In the mid-1600s Scottish mathematician James
Gregory published the first proof of what is now called the Fundamental Theorem
of Calculus, changing the math world forever. The Indefinite Integral is often
referred to as the Anti-Derivative, because, as an operation, it and the Derivative
are inverse operations (just as squares and square roots, or exponential and log
functions). In this chapter, we will consider how to reverse the differentiation
process. In the next chapter, we will explore the definite integral.
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2.1: Anti-Derivatives--the Power Rule

As we have seen, we can deduce things about a function if its derivative is know.
It would be valuable to have a formal process to determine the original function
from its derivative accurately. The process is called Anti-differentiation, or
Integration.

Symbol:  [(f(x)) dx="the integral of f of x, d-x"

The dx 1s called the differential. For now, we will just treat it as part of the integral
symbol. It tells us the independent variable of the function (usually, but not
always, x) and, in a sense, is where the increase in the exponent comes from. It
does have meaning on its own, but we will explore that later.

Looking at the integral as an anti-derivative, that is, as an operation that reverses
the derivative, we should be able to figure out the basic process.

Remember:
% [x"]=nx""

and Dx [constant] 1s always 0

(or, multiply the power in front and subtract one from the power). If we are
starting with the derivative and want to reverse the process, the power must
increase by one and we should divide by the new power. Also, we do not know,
from the derivative, if the original function had a constant that became zero, let
alone what the constant was.

The Anti-Power Rule

n+l

J(x")dxz x+1+c for n=-1

The "+ ¢" is to account for any constant that might have been there before the
derivative was taken. NB. This Rule will not work if n = -1, because 1t would
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require that we divide by zero. But we know from the Derivative Rules what
yields x ! (or %C) as the derivative--Ln x. So we can complete the anti-Power Rule

as:

The Anti-Power Rule

n+l

J(x”)dx=:;+1+c if n#-1

Jl dx=Ln|x |+c
x

Since Dy [f(x)+g(x)] ~ Dx [f(x)] + Dx [g(x)] and Dx [cxT] = cDx [x1], then

[(£(x)+g(x)) dx= [ f(x) dx+[g(x) dx
Jelr () dx=c[f(x) ax

These allows us to integrate a polynomial by integrating each term separately.

OBJECTIVES
Find the anti-derivative of a polynomial.
Integrate functions involving Transcendental operations.
Use Integration to solve rectilinear motion problems.

Ex 1 ﬂ3ﬁ+4x+5yu

2+1 1+1 0+1
32 +4x+5)dx=32 44X ;5% 4
J(x x+5) dx 241 1+1 0+1 €
_3x3+4x2+5x1+c
3 2 1

=x>+2x>+5x+c
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Ex 2 [x4+4x2+5+l—i5]dx
J X X
1 1 X4+1 4x2+1 5X0+1 x—5+1
YA +H5+——— | dx= + + + Ln|x— +
(x XASHS xSde 7 I e A P R e

+c

1 4
=§x5+§x3+5x+Ln | x|+

—4x*

Ex 3 x2+§/_—£j dx

1 3.4
=§x3+zx/3—4Ln | x |+c

Integrals of products and quotients can be done easily IF they can be turned into a
polynomial.

Ex 4 J(x2 +§/})(2x+1) dx

J(xz +x3/;)(2x+1)d x= J(2x3 + 245+ x2 +x%j dx

4 o3 M
2%+27x—+%+’;—+c
'3 Y3

Ly 675,106,345
—2x +7x +3x+4x +c
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Example 5 is called an initial value problem. It has an ordered pair (or initial value
pair) that allows us to solve for c.

Ex5 f'(x)=4x>—6x+3. Find f(x) if £(0)=13.

)= j (4x° = 6x+3) dx

=x*-3x2+3x+c¢
£(0)=0*=3(0)° +3(0)+c=13
c=13

f(x)=x*-3x*+3x+13

Ex 6 The acceleration of a particle is described by a(r) =3¢ +8r+1. Find the
distance equation for x(t) if v(0) = 3 and x(0) = 1.

w(t) = J(a(t)) dt = J(3t2 +8¢+1) dt
=’ +4 +t+¢,
3=(0)"+4(0)* +(0)+¢,
3=¢
vit)=t>+41>+1+3

x()= [(v(r)) de = | (£ + 422 +1+3) de

1 4 4 3 1 2
=—t"+-t"+=t"+3t+
47372 “
1

1=(0)" +5(0) +5(0)° +3(0) +c,

1 4. 45, 1,
H=—t*+=3+ 12+ 3t +1
x(t)=g1+ 510+
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Ex 7 The acceleration of a particle is described by a(r)=127> —6¢+ 4. Find the
distance equation for x(z) if v(1) = 0 and x(1) = 3.

v(6)=|(a(t)) dt = [(12¢* - 61 +4) dt
=417 =3t + 41+
0=4(1) =3(1) +4(1)+¢,
-5=¢
v(t)=413-3t> +41-5

x(t)= [(v(t)) dr = [ (4% =3¢ +41=5) dt
=t* - +2t* -5t +c,
3=(1)" =(1) +2(1)° = 5(1) + <,

6=c,

x(t)=t*—1>+2t> =51 +6
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The proof of the Transcendental Integral Rules can be left to a more formal
Calculus course. But since the integral is the inverse of the derivative, the
discovery of the rules should be obvious from looking at the comparable derivative
rules.

Derivative Rules
d . o du d . du
a[sm u]=(cos M)dx E[CSC ul=(—cscu COtu)dx
d e oAU d _ du
a[cos u]=(—sin u)dx E[SGC u]=(secu tan M)E
d _ 2 du d _ ) du
E[tan u]—(sec u)a E[cot u]—(—csc u)a
d oo (gn)9H d (1)du
dx[e ]—(e )dx a[l‘” ”]_[;)a
d du
—[a“}za“-Lna— d _ 1 du
dx dx dx[LOg“ u]_(u-Ln a]dx
dprea 1 d—_csc'1u :_—1-D
dx > u}— 1— 2 Do axl } |u |[Vu? -1 "
d et =L . d et o 1
dx_cos u}— — DM dx_sec u} |u| = Du
d . -1 1 dr ~1
a Tt — D d 1.7
i an M:| w2y e _COt ui|— 21 Du
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Transcendental Integral Rules
f(COS u) du=sin u+c f(cscu cot u) u=—-cscu+c
f(sin u) du=—-cosu+c f secu tanu u=sec u+c
J(sec2 u) du=tanu+c Jcsc u du——cotu+c
J(e“)duze”+c J du Ln |u|+c

aLt
J(a”) du = I a+c
.

=sin" u+C duzztan_1u+C
J1=u? I+u
;t =sec'u+C

J uNu® —

Note that there are only three integrals that yield inverse trig functions where there
were six inverse trig derivatives. This 1s because the other three rules derivative
rules are just the negatives of the first three. As we will see later, these three rules
are simplified versions of more general rules, but for now we will stick with the
three.

Ex 8 f(sin x+3c0s x) dx

j(sin x+3cosx) dx= j(sin x) dx+ 3j(cos x) dx

=—cos x+3sin x +c¢

Ex 9 J(ex + 4 + 3csc? x) dx
J(ex + 4 + 3csc? x)dx = f(ex) dx + 4_[dx+ 3{(0502 x)dx

=e*+4x—-3cotx+c
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Trig Inverse Integral Rules

R
du . u du 1 _u
— =sin'Z2+C —— =—tan 'Z+C
J a’—u? a u-+a a a

R
du \u
————=—sec’ —+C
JuNu*—a* a a

Ex 10 If
u-+4

dx 1, _u
= tan ' 2+
14 pEn ote

Ex 111If %zsec x(sec x+tan x), find y(x)if y(0)=0.

y= J(sec x(sec x+tan x))dx: J(sec2 x) dx + [(sec x tan x) dx

=tan x+sec x+c¢

O=tan O+sec O+c
0=0+1+c
c=-1

y=tan x+sec x—1
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2.1 Free Response Homework

Perform the Anti-differentiation.

1. J(6x2 —2x+3) dx

2

5. jx3(4x2+5) dx

e

9. [(x+1) dx

1. JLJE+3 W—%) dx
13. j(x2+5x+6)dx

dx

15 Jx5—7x3+2x—9
' 2x

17, J(y2+5)2 dy

Solve the initial value problems.

19.  f'(x)=3x*—6x+3. Find f(x),if f(0)=2.

10.

12.

14.

16.

18.

J(x3 +3x% — 2x+4) dx
J(8x4 — A4+ 9x% +2x + 1) dx

[(4x—1)(3x+8) dx

J(x2+\/}+ 3] dx

X

J(4x — 3)2 dx

J[4x3+\2/}+3J v

(x> +3x2+3x+1

J x+1 d

[ (42> +1)(3 +7)at

20.  f'(x)=x’+x*—x+3. Find f(x),if f(1)=0.
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21 f(x)=(Vx—2)(3Vx+1)- Find f(x),if f(4)=1.

22.  The acceleration of a particle is described by a(r)= 36t —12t+8. Find the
distance equation for x(r), if v(1)=1and x(1)=3.

23.  The acceleration of a particle is described by a(z)=1>—2¢+4. Find the
distance equation for x(z) if v(0)=2 and x(0)=4.

2.1 Multiple Choice Homework

1
1. — dx=
sz

a) Inx*+C b) —Inx*+C c) '+ C

d —x'+C e) 2x°+C

2. Jx(10+8x4) dx =
2 4 6 2 8 5 4 6
a) 5x +§x +C b) 5x +§x +C ¢ 10x+§x +C

8
d) 5x* +8x°+C e) 5x% + 7x6 +C
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3. Jx@ dx =

a) &x%+C b) —Sfx%+C C) %x%+C
54/3

d)  23x+C ) T\/_x%+C
4 J(x —1)Vx dx=
a) %«/}—%+c b) %x%+%x%+c c) %xz—x+c

d 20 2000 o leiodiye

5 3 2

5. A particle is moving upward along the y-axis until it reaches the origin and

then it moves downward such that v(r)=8—2¢ for r>0. The position of the
particle at time t is given by

a)  y(t)=-t>+8r-16 b)  y(r)=—1*+8:+16
c)  y(t)=2t*-8r-16 d  y(t)=8r-1

e)  y(t)=8r-2¢

6. Ifaparticle’s acceleration is given by a(r)=12r+4 and v(I)=5and y(0)=2,
then y(2)=

a) 20 by 10 ¢ 4 d 16 e) 12
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2.2: Integration by Substitution--the Chain Rule

The other three derivative rules--The Product, Quotient and Chain Rules--are a
little more complicated to reverse than the Power Rule. This is because they yield
a more complicated function as a derivative, one which usually has several
algebraic simplifications. The Integral of a Rational Function is particularly
difficult to unravel because, as we saw, a Rational derivative can be obtained by
differentiating a composite function with a Log or a radical, or by differentiating
another rational function. Reversing the Product Rule is as complicated, though
for other reasons. We will leave both these subjects for a traditional Calculus
Class. The Chain Rule is another matter.

Composite functions are among the most pervasive situations in math. Though not
as simple at reverse as the Power Rule, the overwhelming importance of this rule
makes it imperative that we address it here.

Remember:

The Chain Rule: % [f(g(x))] = f"(g(x))-g'(x)

The derivative of a composite turns into a product of a composite and a non-
composite. So if we have a product to integrate, it might be that the product came
from the Chain Rule. The integration is not done by a formula so much as a
process that might or might not work. We make an educated guess and hope it
works out. You will learn other processes in Calculus for when it does not work.

Integration by Substitution (The Unchain Rule)

0)  Notice that you are trying to integrate a product (or quoptient).
1)  Identify the inside function of the composite and call it u.

2)  Find du from u.

3) If necessary, multiply a constant inside the integral to create
du, and balance it by multiplying the reciprocal of that

constant outside the integral. (See EX 2)

4) Substitute u and du into the equation.

5)  Perform the integration by Anti-Power (or Transcendental
Rules, in next section.)

6) Resubstitute the x-equivalent for u.
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This 1s one of those mathematical processes that makes little sense when first seen.
But after seeing several examples, the meaning suddenly becomes clear. Be
Patient.

OBJECTIVE

Use the Unchain Rule to integrate composite, product expressions.

Ex | J(3x2(x3+5)10j dx

(x3 + S)mis the composite function. u=x>+5
du = 3x?% dx
J(3x2(x3+5)10j dx:J(ulo)du
=Y
1/ 5 o\t
zﬁ(x +5) +c

Ex2 J(x(x2 + 5)3j dx

(x2 + 5)3is the composite function. So “~ 245
du=2xdx
Kx(xz +5) jdx_—J(x2+5) 2x d)
G
1 ut
_5 77
=%(x2+5)4 +c
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Ex 3 J((x3 +x)M) dx

Yx* +2x? —5is the composite function. So
u=x*+2x*-5

du= (4x3 + 4x) dx = 4()63 +x) dx

2 _
Ex 4 3x“+4x-5 N
(x3+2x2—5x+2)

u=x>+2x>—-5x+2
3x2 +4x— 5)

X 4+2x*=5x+2

u=
H( 3% +4x-5 3]dx Jx+2x ~5x+2) ((3x2+4x—5)dx)
=] (v

-M_+c
-2




Of course, the Unchain Rule will apply to the transcendental functions quite well.

Ex 5 J(sin Sx) dx

u=>5x
du =5dx
[(sin 5x) dx = % [(sin5x) 5 dx
= %j(sin u) du
= é(—cos u)+c
=—%cos 5x +c¢
Ex 6 J(sin6 X COS x) dx
u=sIin x

du =cos x dx

J(sin6 X COS x) dx = J(u6) du

1
=—u'+
7u c
=_sin’ x +c¢
Ex 7 J(xssinx6)dx
u=x®
du=6x>dx

J(x5 sin x6) dx = éj(sin x6 )(6x5dx)
= éj(sin u) du
= —écos u+c

——1cosx6+c
6
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Ex 8 J(cot3 x csc? x) dx
u=cotx

du=-csc? x dx

J(cot3 x csc? x) dx = —J(cot3 X )(—csc2 X dx)

=—iu4+c
=——cot*x+c
b ([ |
u=x=x"2
1 -1 1
du=—x"?dx= d
u 2x X Zx% X
cos Vx B 1
J[ e )dx—ZJ(cos«/;) (mdxj
=2J(cosu)du
=2sinu+c
=2sinVx+c¢
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u=x>+1
du=2x dx
_%J'(exz” )(2x dx)
=% (e”)du
=le”+c
2
=%€x2+l+c
dx
u=x’
du=2x dx
[
dx=— (2x dx)
2] 1= ()
11
) 1—u? du
=lsin‘1u+c
2
=—sin"'x% +c¢
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Ex 12 J(xexz +4x? - 3sin5x) dx
J(xexz +4x%— 3sin5x) dx= J(xexz) dx+J(4x2) dx+j(—3sin5x) dx

2j (2xdx) +4]x2 dx——jsme (5dx)

U =x u,=5x
du,=2x dx du, =5 dx

= %je"' du, +4[x* dx—%jsinu2 du,

1 . x? 3

=§el +4[?] —g(—cosuz)'f'c

=1 +£x3 +§COSSX+C
2 3 5

=—=€
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2.2 Homework Set A

Perform the Anti-differentiation.

11.

13.

15.

17.

19.

21.

[(5x+3)" ax

P(l + x3)2 dx

(x\/2x2 + 3) dx

.X3

J1+x*

dx
J(xs — sin(3x) +xe* )dx
J(x“ cos x5) dx

J(secz(Sx— 1)) dx

J(tan4 x sec? x) dx

( cot x csc? x) dx

138

10.

12.

14.

16.

18.

20.

22.

Hx?’(x“ +5)24j dx

J(Z - x)% dx

dx
(5x+ 2)3
x—"'l dx
Ix2+2x+3
3
J'(x2 secz(x3)+ln—x]dx
X




dx

X
23.
{1+x4

2.2 Multiple Choice Homework

24. ——
J'\/l —sin% x

COSX
dx

a) 4(}62‘—14)2% b) ﬁw ¢) %ln‘x2—4‘+C
d) 21n‘)c2 - 4‘ +C €) %arctan(%) +C
e
2. J;\/; dx =
a) InVx +C b) x+C c) e +C
d) %e”hc e) e +C

3. When using the substitution i =+/1+ x, an anti-derivative of

J60x\/1+x dx is
a)  20u°—60u+C b)

d) 24u” —40u’ + C

15u* —30u” +C

e)

C) 30u* —60u’ +C

12u® = 20u* + C
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2
4. J 3x dx

Vx*+3
a) 2Wx*+3+¢ b) % X +3+c c) ¥} +3+¢

d) Invx*+3+c

e) ln(x3 + 3) +c

%(xz —1)5 +C ¢ %()ﬁ —x)5 +C

e) %(x2 - x)5 +C

6. J4x2\/3+x3 dx

3132
2) 16(3-;)6) e b)
d) 4 m—,
3(3+x3)

32 32
8(3+x3 8(3+x3
( 9x) +c  ©) ( 3x) +c
8
€) 1/2+c
3(3+x3)
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7. J(x3+2+ 21 jdx=
x +1
x4
a) :r+2x+mn”x+C b)  x*+2+tan'x+C
x* x*
) —+2x+———+C d) —+2x+tan'2x°+C
4 x +3 4
e) 4+2x+tan” x+C
8. Jcos(3—2x) dx =
a) sin(3-2x)+C b) —sin(3-2x)+C
1. 1.
C) Esm(3—2x}+C d) -—Esm(3—2xy+C
1.
e) -—gsm(3—2x)+(f
9. fx_zch:
x—1
a) —In|x—1]+C b) x+hnfx-1+C
c) x—hﬂx—H+C d) x+Jx—-1+C

x—vx-1+C
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b) x—e* +C

e)

2
C) x+e* +C

2
- +C

11. J6sinxcoszx dx =

a) 2sin’ x+C

b) —2sin’ x+C

c) 2cos’ x+C

d) —2cos’ x+C e) 3sin” xcos’ x+C
12. f W =
1+x
4 1 5
a) 4arctanx+C b) —arctanx+C c) Eln(1+x )+C
X
d) 21n(1+x2)+C e) 2x2+4ln|x|+C
13. * 4
j4+x2 *
a) tan™! % +c b) ln(4 + x2)+ c c) tan~' x+ ¢
d) lln(4+x2)+c e) ltan‘lfikc
2 2 2
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14, j 4621” (25 =42 dix

4 o2 o 4 2F 45
X nx b x-1_ 7 nx 4
a) 2%In2 - 3 +c ) x2 3x +c ©) 2 3¢ c
4 2% 4
d x=1_ 7" 2lnx ~ 3 +
) x2 3 e +c e) o 3% e
15. The anti-derivative of 2tanx
a) 2 1n|secx| +c b) 2sec’x+c C) ln|sec2 x| +c
d)  2lIn|cosx|+c e) In|2secx|+c
16.  Which of the following statements are true?
L. J(xS sin x(’) dxz—lcos x+c I1. Itanxdxzseczx+c
6

I1I. J((x3+x)\/4 x4+2x2—5) dx=%(x4+2x2—5)%+c

a) I only b) Tonly ¢) lTonly d) Tand M only ) Il andIIl only

ab) Iand III only ac) L II, and III ad) None of these
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Jx

17. ¢ _d
\/} X
a) 2¢™ +¢ b) %e‘/} +c c) e+ ¢
d)  2Jx eF ) e
*+ e —+
X e C 2\/} C

18. If x'(t)zZtcostz, find x(l) when x[\/gj=3

a) x(t)z —4¢* sint?

b) x(t) =—4¢*sint* + 2 cost?
c) x(¢)=sins* +3

d) x(t)=—smt2 +4

€) x(t)z sin#? +2

19. A particle moves along the y-axis so that at any time ¢>0, it
velocity is given v(t)=sin(2¢). If the position of the particle at time

tzg is y =3, the particle’s position at time =0 is
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2.2 Homework Set B

Lo [(2x+5)(x>+50+6) dx 2. [ +1)ar
3. J 10m+15 gy 4 J AN

> +3m+1 (14
5. [(4s+1) ds 6. tfi -t
7. nim: Sdm 8. [(181x+1) dx
9, ﬂ5r2v3 dv 10, J(x* = sin(3x)+ xe" ) dx
[ 12, [a?sec(x)+ 2xe” d
13, [sec?(2x)dx 14. J #@dx
15. J sec(1nx3);an(1nx) dx 16. J{xs ; % & 4 sec? x]dx
L [erescetcote d 18, [(e—2)(e ~1)ds

19. j(secz ytan® y)dy. Verify that your integration is correct by taking the

derivative of your answer.
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20. JLcos Oesnf + 026 1ja’e. Verify that your integration is correct by taking
+

the derivative of your answer.

21. jtsecQ (4t2), /tan(4t2) dt. Verify that your integration is correct by taking

the derivative of your answer.

22. sz sinx® dx 23. JteS’ZH dt

24, j(ey - 1)2 dy 25. stec2 x*/tanx? dx

26. jsin(?at)cos5 (3t) dt 27. J‘xcosxzes"”2 dx

28.  [tan6ln(sec6)do 29. (&% +2y* —Tcos3y)dy
sin(x+4) 2 "

30. —dx 31. ——secz(3x)+xex — 7 |dx
cos’ (x+4) x> +5

32, [esec® 33. Jlglnm dm

m

2ycos(y2)
34. Jsin“—(yz)dy
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2.3 Separable Differential Equations
Vocabulary:

Differential Equation (differential equation) — an equation that contains an
unknown function and one or more of its derivatives.

General Solution — The solution obtained from solving a differential equation. It
still has the +C in it.

Initial Condition — Constraint placed on a differential equation; sometimes called
an initial value.

Particular Solution — Solution obtained from solving a differential equation when
an initial condition allows you to solve for C.

Separable Differential Equation — A differential equation in which all terms with
y’s can be moved to the left side of an equals sign ( =), and in which all
terms with x’s can be moved to the right side of an equals sign ( =), by
multiplication and division only.

OBJECTIVES

Given a separable differential equation, find the general solution.
Given a separable differential equation and an initial condition, find a particular
solution.
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Ex 1 Find the general solution to the differential equation % =X
X oy

dy  x

—=—= Start here.

dx y

ydy =—xdx Separate all the y terms to the left side of the equation
and all of the x terms to the right side of the equation.

_[ vdy = | —xdx Integrate both sides.

% Y= —lx2 +C You only need C on one side of the equation and we put
it on the side containing the x.

Yy =-x*+C Multiply both sides by 2. Note: 2C is still a constant, so
we’ll continue to note it just by C.

x*+y*=C This equation should seem familiar. It’s the family of
circles centered at the origin with radius /C .

y=1JC—x? Isolate y.

Usually, if it’s possible, we will solve our equation for y — so our solution can be

written as y =+y/C — x>

Also to note, we could check our solution by taking the derivative of our solution.

x2+y?=C=2x+2y

@ _
dx dx

Ozﬁz—i.
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Steps to Solving a Differential Equation:

1.

2.

4.

Note:

Separate the variables. Note: Leave constants on the right side of the
equation.

Integrate both sides of the equation. Note: only write the +C on the right
side of the equation. Here’s why — you will have a constant on either of
your equation when you integrate both sides of your differential Equation,
but you would wind up subtracting one from the other eventually, and two
constants subtracted from one another is still a constant, so we only write +C
on one side of the equation.

Solve for y, if possible. If you integrate and get a natural log in your result,

solve for y. If there is no natural log, solve for C. Note: M = y because e

raised to any power is automatically positive, so the absolute values are not
necessary.
Plug in the initial condition, if you are given one, and solve for C.

Solve for C immediately if the left integral does not result in a Ln. Simplify

before solving if there is a Ln.

Ex 2 Find the general solution to the differential equation a;l—’? =mt.
dm _ mt Start here.

dt
dm =tdt Separate all the m terms to the left side of the equation

m

and all of the ¢ terms to the right side of the equation.
Jd—m = jtdt Integrate both sides.
m
In|m| = %tz +C You only need C on one side of the equation and we put

it on the side containing the x.
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1
In|| ~24+C

e =e? e both sides of the equation to solve for y.
10
m=e2" e°
Lp . oy :
m=Ke?' et is still a constant, so we will just note it as K.

Ex 3 Find the particular solution to )" =2xy—3y, given y(3)=2.

dy B
dx—(2x 3)y
P _ (2x—3)dx
y

In|y|=x*-3x+C
2_ 2_ 2_
y= ex 3x+C — ex 3xeC — Kex 3x

y(3)=2-2=Ke"

2
Ex4 Solve the differential equation & =¥ +2¥+5

dx 2y+eée¥

dy _9x*+2x+5
dx 2y+e¥

(2y+ey)dy=(9x2+2x+5)dx
Y +e'=3x"+x"+5x+C
yi+e’ =3x’—x*-5x=C

This is the general solution.
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2 _ .
Ex 5 Find the particular solution to % w
r

given that r(0)=3.

dr _ 3t —sint
dt 4r
4rdr = (31> - sint ) dt
2r* =t +cost+C
2:3>=0+cos0+C=C=17
2r* =1 +cost+17

3
r:i\/t—+lcost+1—7
2 2 2

3

ro1 17
r=,—+—=cost+—
2 2 2

Why do we only need the positive r?

What would have happened if you had solved for » before plugging in the initial
condition?

, 1
r-=—+—=cost+C
2 2

r—+\/£+lcost+C
N3 2

3
3=i\/0—+lcos0+C:>C:E
3 2 2

r—\/ﬁ+lcost+E
3 2 2

Again, you can check your solution by taking the derivative of your solution.
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d +1
Ex 6 Let y=f(x) be a differentiable function such that Y 2T and suppose
dx  x?+9

the point (0, — 3) is on the graph of y = f(x).

d2
a) Use implicit differentiation to find )2] :
dx

b) Determine if the point (0, —3) is at a maximum, a minimum, or neither.

. . . dy y+l
c) Find the particular solution to = at (0, —3).
dx x2+9
d?y

a) Use implicit differentiation to find -
dx

o _dfo] (#+5) 5~ )29

dx? } dx | x>+9 (x2+9)2

y+l
@00y e pent-29
(x2+9)2 B (x2+9)2 - (x2+9)2

b) Determine if the point (0, —3) is at a maximum, a minimum, or neither.

dy (-3)+1 2

At the point (0, —3), = — — #(), therefore, neither.
dx  0%+9
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. . . dy y+l
¢)  Find the particular solution to = at (0, —3).
dx x2+9

dy y+1
dx x2+9

d
y+1 Y x2+9

1 1
fy+1dy=fx2+9dx

1 X
ln|y+1|=?tan 3 te

1 X
—tan — +c¢

y+if=e® 7
L
—tan

y+1=ke3

1 X
3

1,0
—tan " —

(0, =3) > -3+1=ke? 35 2=k

1 X

gtan g
y+1=-2e

1 X
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2.3 Free Response Homework

Find the general solution each of the following differential equations.

[
S
Il

==

3. (x2+1)%=xy

s, Dy _xWx -3
' dx y°
2x
7. Y_e
dx 4y
0. d_y 4xy°
11. d—_2+2v+t+tv
dt
3. d8_1+4r
C o dr Jo

10.

12.

dr y85y2
dy _ x2+1
dx secytany

=L =y%cosx

dy _ t
dt  y/y*+1

Find the solution of the differential equation that satisfies the given initial

condition.
dy _ . _
14. it ,y(O)—

1, D2 L y(V2

18. —y:(y +1); y1)=0

154

15.

17.

19.

@zz_x;y(o)zl

dx y

4 _ (x2 +1)(2—y); y(1)=3

dx

dx  xy

2
Y y(0)=-1



du 2t+sec’t. _ s dy _
20 —==———u(0) 21, o= yw-psing; y(0)=5

dy _sinx

22.  Solve the initial-value problem ——
dx  siny’

y(0)==, and graph the solution.

23.  Solve the equation ¢ %+ cosx =0 and graph several members of the
X

family
of solutions. How does the solution curve change as the constant C varies?

24.  Find an equation of the curve that satisfies b _ 4x°y and whose
x

y-intercept is 7.

d
25.  Let y =f(x) be a differentiable function such that d—y =y%(6—2x), and
x

1
suppose the point (3, — g) is on the graph of y =f(x).
d2
a) Use implicit differation to find ——
dx?

1
b) Use the solution to a) to determine if the point (3, - 3) isata

maximum, a minimum, or neither.

. . _ dy 1
¢) Find the particular solution to d_ =y%6-2x)at |3, - 3 )
X

d

: ) . Y
26. Let y =f(x) be a differentiable function such that ity +y, and suppose
x
the point (—1, 2) is on the graph of y = f(x).

d2
a) Use implicit differentiation to find ——.

b) Use the solution to a) to determine if the point (=1, 2) is at a maximum,
a minimum, or neither.
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d
¢) Find the particular solution to d—y =xy+yat(-1, 2).

e . dy  3x
27.  Let y =f(x) be a differentiable function such that o=
X

and suppose
the point (0, 1) is on the graph of y = f(x).

a) Use implicit differentiation to find -
dx

b) Use the solution to a) to determine if the point (0, 1) is at a maximum, a
minimum, or neither.
. . Cdy 3
¢) Find the particular solution to — =
dx y+2

at (0, 1).

. . . dy
28.  Let y =f(x) be a differentiable function such that o (x—=1)(y +2)and
X
suppose the point (1, 0) is on the graph of y = £(x).
d2

a) Use implicit differentiation to find >
dx

b) Use the solution to a) to determine if the point (1, 3) is at a maximum, a
minimum, or neither.

d
¢) Find the particular solution to d—y =(x-1)(y+2)at (1, 3).
X

2.3 Multiple Choice Homework

1. If % =sinxcos’x and if y = 1 when x =7, what is the value of y when x =

X
0?
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2. If % =cosxsin’x and if y = 0 when x =7, what is the value of y when x =
X

H -1 b -39 0 &

3. Identify is the first mistake (if any) in this process:

d_y =xy+x
Step 1: Ld = xdx
Step 2: Iny+1=x*+c
Step 3: \y+1|:ex2+c
Step 4: y=e +c
a) Step 1 b) Step 2 c) Step 3
d) Step 4 e) There is no mistake.

4. Identify is the mistake (if any) in this process:

dy 2.2

-6

dx a4
: 1 2

Step 1: 7dy= 6x°dx

Step 2: 1n|y2‘ =2x>+c

Step 3: Y2 = g2t

Step 4: y =1\ ke

a) Step 1 b) Step 2 c) Step 3
d) Step 4 e) There is no mistake.
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5. The solution to the differential equation % = 8xy with initial condition
X

y(0)=5is
a) 1n(4x2+5) b) 45 o) 14
d) 5In (4x2 ) e) 5e*
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2.4: Integration by Substitution--Back Substitution

Sometimes when applying the Chain Rule, the other factor is not the du, or there
are extra x s that must be replaced with some form of u. The method of choosing u
to equal the inside of the composite function remains the same, but there is more
substitution necessary. This is best understood in an example:

Ex 1: J{x3 (x2 +4)32J dx

u=x*+4
xX’=u—4
du=2x dx

J( 3 (x? +4)/2jd =%ﬂ ?(x? +4)/2](2x dx)
=% (u—4)u%) du
1
2

5/2—41/13/2) du

1{”7/ 5/2]
+c
27 %

(x> +4) e +4) e

1
7

Ex2: [(x+1)Vx—1dx

u=x-—1
x=u+l1
du= dx
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J(x+1)Vx—T dx= J(u+1+1)\/_du
= [(u+2)u"du

= J(u% + 2u%)du
5

u/2 2u3/2

=%+%+c
=%(x—1)%+%(x—l)%+c

Integration by Back Substitution (The Unchain Rule)

0)  Notice that you are trying to integrate a product.
1)  Identify the inside function of the composite and call it u.
2)  Find du from u.
3) If necessary, multiply a constant inside the integral to create
du, and balance it by multiplying the reciprocal of that
constant outside the integral (See EX 2)
3a) Identify any “extra x’s.”
3b) Isolate x in the scratch work
4) Substitute u and du as well as the extra x’s into the equation.
5)  Perform the integration by Anti-Power (or Transcendental
Rules, in next section.)
6) Resubstitute the x-equivalent for u.
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Ex3: [(x+2)(x- 3)4dx

u=x-73
x=u+3
du= dx
ﬂx+2 dvﬂpu+3+2u du
=J +5)u*du
=J(u5+5u
LA A
6 5

2
Ex 4: Jx +4
x+2

There are two ways to approach this problem. One could use polynomial long
division to simplify before integrating:

x> +4 8
J' ) dx-Jx—2+mdx

Then

u=x+2
du= dx

J(x 2+xiz)dx [(x=2)dx+ 8J%du

2

:%—2x+81n‘u|+c
2
=7—2x+81n‘x+2|+c

An alternative would be to make the denominator # and use back-substitution:
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2
);+4lx

Ex 4 (again): J ")

u=x+2
xX=u-2
du= dx

[(u=2)"+4

=|——dx

u
(u?—4u+4+4
u

2_
u 4u+8du
u

(u—4+§jdu
u

2
5=
(x+2)2
2

du

4u+81njul+c

—4(x+2)+8Injx+2[+c

The answer looks different from what the answer was the first time, but, with
FOILing and adding like terms, it can be shown that these are the same answer.

As a rule of thumb, doing algebra simplification before Calculus will generally
make the problem shorter and more simple. In this case, Polynomial Long
Division made the problem easier than Back-Substitution.
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2.4 Free Response Homework

1. J‘x\/4—xdx 2. J(xs)\/x3+4dx

%dx 4., Jx3 (x2 + l)lzdx

2

s J(3+lnx)x(2—lnx) i 6. J o Ted
7. J(xs (x2 + 4)2j dx 8. J\/x—i- 3 (x+1)2 dx
9. [(r-1)(2e+4) 10, [(z-3)(3-1)'dz

(" 5 5

y w

11. J y3+5dy 12. jw2+4dw

( s 7
13. Y dx 14. X

J (=) J (x4 +4)
15, [(x+2)x—Tdx 16, [JVAd—x (2x+5)dx

17. J(e%/ﬁ) dx
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2.4 Multiple Choice Homework

1. f(x3)\/1+x2dx
4 2\
a) %(1+§) +c
by a{i+) 2l e
O —a(1+2) e k(142 2
e (R
e) %(1+x2)%+c
2. f(xS)V1+x2dx
f1+27)" b Ly Vs 20 oV
a) 3 +c ) 3( +x ) 7( +x) +c
O S P 2e) 2 1407 P
1) () 2 ) P
O S (1) e 1) P
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2
a) x—;-(g_;z) +c b) %ln‘9—x2‘+%(9—x2)+c
) g(g_xz)z_%(g_xz)ﬂ d) g(g_xz)%(g_xz)%c
€) %——2+c

5

+ J(x2x+5]dx:
) 245 =5[22 +5)+ Din(x 4 5)+e
b) %( 2+5)2—5(x2+5)+275tan‘1(x2+5)+c
¢) %(x2+5)2+5(x2+5)+%1n(x2+5)+c
d) %(x2+5)2+5(x2+5)+275tan"1(x2+5)+c
e) none of these
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3. j(ezx\/m)dx

a) 5(e +1)/2 3" +1)/2 b e(en+1) e
c) %es%—563%+c d) %(ex+l)%+3(ex+l)%+c
O e +1) = Ee 1) 2

2) %(4—x2)%—4(4—x2)%+c b) %(4—x2)%—2(4—x2)%+c
c) %(4—x2)%—4sin‘%+c d) %(4—x2)%—25in‘1%+c
%

e) %(4—x2) —sin‘%Jrc

7 J'[ dox dez

4—x?
a) 4sm'§+(4 x)%+c b)  2sin™ 5 (4 x)/2
c) 4(4—x2)%+c d) sin_%—(4—x2)%+c
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2.5: Powers of Trig Functions: Sine and Cosine

Another instance of Back Substitution involves the Trig Functions and the
Pythagorean Identities. As we saw in previous sections, since

fl—x[cos x]=(-sin x) and Z—x[sin x|=(cos x),

one of these functions can serve as the du when the other serves as u. But what
about when there are higher exponents involved? In general, what about:

Jsin” x cos™ x dx

OBJECTIVE

Use the Integration by Substitution to integrate integrands involving
Sine and Cosine.

There are two cases of integration of this kind of integrand, depending on the
powers m and n.

Case 1. The easier (and more common case on the AP test) is when either m
or n is an odd number. One of whichever function has the odd power will be the
du and the rest of those functions can convert to the other trig function by means of
the Pythagorean Identities.

Remember:
sinZ0 +cos?@=1
1—cos20=sin%0

1—sin?0 =cosZ0
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Ex 1 Jsin4x cos> x dx

Since cosx has the odd power, u=sinx, du=cosx, and cos’x=1-sin’x=1-u>.

2

Jsin4xcos3x dx=_[sin4x COS” x cosx dx

=Isin4x (l—sinzx) cosx dx

= u4(1—u2) du

=J(u4—u6) du

=%u5—%u7+c
=%sin5x—%sin7x+c

Ex 2 Jsins x cos? x dx

Since sinx has the odd power, u=cosx, du=-sinx, and
sinx=1-cos’x=1-u?.

Jsin® xcos? x dx=—{sin* x cosx (—sinx)dx
=—|(sin’ x)2 cos? x(—sinx)dx
=—[(1-cos? x)2 cos? x(—sinx)dx
- —J(l—uz)zuzdu
=—| (1—2u2 +u4)u2du

=—[ (u? = 2u* +u®)du

= —(lbﬁ —%us +lu7j+c

3 5 7
= —%cos3x+%cos5 x—%cos7 x+c
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If both powers are odd, either function can serve as u. Because of the negative
sign, it is usually deemed easier to choose u = sin x.

Ex3 Jtanx dx

At first, this does not appear to be a sin/cos integral, but a basic substitution
reveals it is:

=—In|cosx|+c
= ln|cosx|_1 +c

=In[secx|+c

This gives us two more integral rules:

Jtanu du = In|secu|+c Jcotu du =In|siny|+c

The last two trig integrals, j secu du and Jcscu du , seem to be of the same kind

as these two, but proving these by sin and cos is difficult. We will give the rules
here and prove them in later.

jsecu du =1In|secu +tanu|+c jcscu du =1In|cscu —cotu|+c
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Case 2. The more difficult situation is when both powers are even. In this
case, variations on the half angle argument rules come into play.

sin2x=%(l—cos2x) and cos? x :%(1+cos2x)

Ex 4 jcoszx dx

Jcos2x dx = J.(%(l+cos2x)] dx

11
=35 (1+cos2x) 2dx

= iJ‘ (1+cosu)du

=lu+lsinu+c
4

(2x)+ L sin(2x) + ¢
1

4
1
4 4

——x+lsin2x+c
2 4

This example leads to two more integral equations that are helpful to know:

2 11 . 9 I U
Jcos u du—2u+4sm2u+c J.sm u du—2u 4sm2u+c
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Ex 5 I sin® xcos? x dx

J(i (1- cost)]Z(%(1+cos2x)] dx

=%j(1 2c082x+Ccos> 2x)(1+cos2x) dx

éj(l C0S2x— 082 2x +COS 2x)dx

u=2x
du=2dx

11 2 3

§~§J(1—cos2x—cos 2x+cos 2x)2dx
I%J(I—COSM—COSZM+COS3M) du

1 _ 1 2 1 3

16J du cosu)du 16 (cos u)du+16j(cos u)du
_ 1. _L 11 1t eos2

16” 16smu 16(2” 4sm2u)+16 (COS u) cosudu+c

v=sinu
dv = cosudx

1 1 1(1 1 1 )

Eu ES u E( u Zsm 2u}+ﬁ (1 sin u) cos u du+c

1 1 1 1 1 )

Eu Esmu 3—2u+6—431n2u+ﬁ (1 % )dv+c
—u—ismu—imism%ﬁi v—lv3 +c

16 16 32 64 16 3

1 1 1 1 1 1
16(2x)—ﬁsm(2x)—§(2x)+6—4s1n2(2x)+ﬁ(s1n2x—§sm 2xj

1 1 1 1 1
gx—ﬁsmbc—Ex+6—4$m4x+ﬁsm2x—ﬁsm 2x+c

—Lx+Lsm4x—Lsm 2x+c
167 64 48
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2.5 Free Response Homework

Perform the Anti-differentiation.

1. Jsin3x cos? x dx 2. Jsin4xcoss x dx

3. J‘sin2 x cos’ x dx 4. .[sins x cos®x dx
5. Jsinx cos> x dx 6. Jsinsx cos> x dx
7. Jsinz x cos®x dx 8. Jsinz x cos*x dx

2.5 Multiple Choice Homework

1. For _[sin3 3xcos’ 3x dx, the correct u-substitution is

a) u=sinx

b) U=COSX

c)  either y=sinx or u=cosx
d) neither y =sinx nor y=sinx

e) none of these

2. For Jsin35xcos2 5x dx, the correct u-substitution is

a) u=sinx b) U=COSX
c)  either y=sinx or u=cosx d)  neither y=sinx nor u=sinx

e) none of these
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3. For Jsin“ 4xcos’4x dx, the correct u-substitution is
a) u=sinx b) U=COSX
c)  either y=sinx or u=cosx d)  neither y=sinx nor y=sinx
e) none of these
4. For Jsinz xcos* x dx, the correct u-substitution is
a) u=sinx b) U=COSX
c)  either y=sinx or u=cosx d)  neither y=sinx nor y=sinx
e) none of these
5. fcos2 2x dx=
a) sindx+c b) %x+%sin4x+c
c) lx—lsin4x+c d) x+lsin4x+c
2 8 4
e) X+ 1 cosdx+c

8
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6. J0052 lx dx =

2
: 1 1.
a) sindx+c b) —Xx+-—sinx+c
2 4

1 1. I 1.

S x—= d x4
C) 5 4smx+c ) 4x+2smx+c
e) lx+lcosx+c

42
7. Where is the mistake in this process:

jsin32xcos4 2x dx=

Step 1: —%_[sin2 2xcos*2x (—sin2x2dx)=

. 1 2\, 4 _
Step 2: ) (1—u )u du=

: Lo 6y
Step 3: ) (u —u )du—
Step 4: —%(%us —%u7+c):
Step 5: L Gind dx+ L in?dx+c

10 14

a) Step 1
b) Step 2
c) Step 3
d) Step 4
e) There is no mistake.
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2.6: Powers of Trig Functions: Secant and Tangent

As with sin and cos, Tan and Sec work together in a Pythagorean Identity and Csc
and Cot work together in a Pythagorean Identity. So, we can consider integrals of
these forms

jsec”x tan” x dx or Jcsc”xcotmx dx

to be cases of Integration by Substitution.

Remember:
tanZ0 + 1=sec?0 1+cot?0=csc?6
sec20 — 1=tan’@ csc29—1=cot?0
secZ0—tan? =1 csc2@—cot?0=1
4 ranalefsec 4 resenle(- du
T [ tan u]—(sec u)dx T [cscu]=(—cscu cotu)dx
d _ » \du d _ du
a[cot u]—(—csc u)a a[sec u]=(secu tan u)a
OBJECTIVE

Use the Integration by Substitution to integrate integrands involving
Secant and Tangent or Cosecant and Cotangent.

There are three cases of integration involving these kinds of integrand, depending
on the powers m and n.

Case 1. When the Secant’s (or Cosecant’s) power is even, then

u=tanx

du=sec? x dx
and

tan?x+1=sec?x (or u?>+1 =sec’x
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Ex 1 jsec4x tanZ x dx

Case 2.

Jsec4 xtan® x dx= J.sec2 xtan® xsec? x dx
= J.(1+tan2 x)tanzxseczx dx
= j(l+u2)u2du
= j(uz +u4) du

=%u3+%u5+c

3

1 1
=—tan3x+§tan5x+c

When the Tangent’s (or Cotangent’s) power is odd, then

U=secx
du = (secxtanx)dx

and

tan’x=sec?x—1 (or u?—1 =tan2x)

Ex 2 J.csc3x cot3x dx

Because cot has an odd power, it will be part of du and

Uu=CSsCx

du =(—cscxcotx)dx

cot’x=u?-1
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jcsc3xcot3x dx:—jcsczx cot? x (—cscxcotx)dx

= —qu (u2 - l)du

= —j(u4 - uz)du

= —éus +%u3 +c
=—%cs05x+%csc3x+c

If both cases are present (that is, the tangent power is odd and the secant power is
even), either function can serve as u.

Case 3. When the Tangent’s (or Cotangent’s) power is even AND the Secant’s
(or Cosecant’s) power is odd, then

The problem is not an Integration-by-Substitution problem. Itis an

Integration-by-Parts problem. We will need to wait until Chapter 8 to
do them.
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Summary of Integrals of Powers of Trig Functions

L. jsin" x cos™ x dx
a. The odd power determines du. The other function is u.
b. If both powers are even, use the half-angle formulas and simplify.

I1. jsec"x tan” x dx or Icsc"xcotmx dx

If both powers are even, u =tanx and du = sec? x dx
If both powers are odd, u =secx and du=secxtanx dx

If n 1s even and m 1s odd, either a. or b. will work
If n 1s odd and m 1s even, neither a. nor b. will work

/e o

[II. Any other mix of trig functions
a. Convert all to sinx and cosx and use I. above
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2.6 Free Response Homework

Perform the Anti-differentiation.

1. Jsecz xtan® x dx
2. _[sec6 xtan® x dx
3. jsecs xtan’ x dx
4. Jseczxtan6x dx
5. Jsec6xtan3x dx
6. jcsc2 xcot® x dx
7. jcsc3xcot5 x dx
8. Jcsc7 xcot® x dx
9. J‘csc4 xcot? x dx

10. jcsc4xcotx dx

2.6 Multiple Choice Homework

1. For _[csc3xcot5 x dx, the correct u-substitution is

a) U=CSCX b) u=cotx

c) either u=cscx or u=cotx d) neither u=cscx nor u=cotx
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2. For Jcsc“xcot“x dx, the correct u-substitution is

a) U=CSCX b) u=cotx

c) either u=cscx or u=cotx d) neither u=cscx nor u=cotx

3. For Jsec“ xtan® x dx, the correct u-substitution is

a) U=Secx b) u=tanx

c) either u=secx or u=tanx d)  neither u=secx nor y=tanx

4. For JsecS xtan* x dx, the correct u-substitution is

a) U=Secx b) u=tanx

c) either u=secx or u=tanx d)  neither u=secx nor y=tanx
5. Which of the following statements are true?

L. J(secx) dx=In|secx+tanx|+c II. Jtanxdxzsec2x+c

1. _[xz cotx’dx= %ln‘sinx3| +c

a) I only b) IT only c) III only

d) I and II only e) land III only
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6. Which of the following statements are false?

L. J(xS secx6) dx=%ln‘secx6+tanx6|+c 1. jtanxdxzseczx+c

I11. _[cscxdx =In|cscx—cotx|+¢

a) I only b) Il only C) III only
d) TandIIonly e) land III only
7. State the step that has the first mistake in this process:

Jsec4 2xtan®2x dx =

Step 1: %jsec2 2xtan’2x sec? 2x2dx =

. 1 2\,3 7 _
Step 2: 5J-(l—u )u du=

. L sy,
Step 3: Ef(u —u )du—

1(1 1

4: Hout—Zub e |=
Step 2(4u 6” +cj
Step 5: Lian* 2x— L tanf2x+¢

P> g 12

a) Step 1 b) Step 2 C) Step 3 d) Step 4

e) There is no mistake.
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2.7 Intro to AP: Slope Fields

This section is very much an AP-driven section. The underlying philosophy is that
math should be understood and explained algebraically, graphically, numerically
and verbally. The topic of differential equations fits nicely into this paradigm in
that the visual is a graphical representation and the connection between the
equation and the slopes 1s a numerical process.

Vocabulary:

Slope field — Given any function f, a slope field is drawn by taking evenly spaced
points on the Cartesian coordinate system (usually points having integer
coordinates) and, at each point, drawing a small line with the slope of the
function.

Here is an example of a slope field:

The line segments represent the slopes of the lines tangent to the solution curve at
the specific points where each is drawn.

Objectives:

Given a differential equation, sketch its slope field.

Given a slope field, sketch a particular solution curve.

Given a slope field, determine the family of functions to which the solution
curves belong.

Given a slope field, determine the differential equation that it represents.
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There are four ways that the AP Exam usually approaches Slope Fields:

Draw a Slope Field (free response)

Sketch the solution to a Slope Field (free response)

Identify the solution equation to a Slope Field (multiple choice)
Identify the differential equation for a Slope Field (multiple choice)

AW N -

Two of these questions (#2 and #3) are graphically oriented and two (#1 and #4)
are numerically based.

1. Slope Fields Numerically (FROs)

Ex 1 Sketch the slope field for % =127 atthe points indicated.
x X

Note that, wherever y=1, % =0. So, the segments at y =1 will be horizontal.
x

Also, where x=0, dy =dne. So, there are not segments on the x-axis.
X

We can then plug the numerical values of the points into % =127 o determine
X x

the slant of the line segments.
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_ dy _1 dy__1

( 2,2)—>dx_2 (2,2)edx_ >

_ dy__1 dy _1

(Z’O)ﬁdx_ 2 (Z’O)ﬁdx_Z

5y _ 3 o\ W3

(-2, z)edx_ > (2, 2)%dx—2
etc.

Steps to Sketching a Slope Field:

1. Determine the grid of points for which you need to sketch (many times the
points are given).
2. Pick your first point. Note its x and y coordinate. Plug these numbers into

the differential equation. This is the slope at that point.

3. Find that point on the graph. Make a little line (or dash) at that point whose
slope represents the slope that you found in Step 2.

4. Repeat this process for all the points needed.
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2. Slope Fields Graphically (FROs):

Ex 2 Given the slope field of % = x below, sketch the particular solution given
X

the initial condition of (3, 2).

Ex 3 Given the slope field for x% = 1below, sketch the particular solution given
X

the initial condition of (1, 3).
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~ ~ ~ \ 3+ / 7~ - -
~ ~ ~ \ 2 / 7 - -
~ ~ ~ \ 4 / 7 - -

~ ~ ~ \ -1 7/ pd - -
~ ~ ~ \ 2+ / 7 - -
~ ~ ~ N\ /7 P - -
-~ ~ ~ \ han / 7 - —

-~ ~ ~ N\ 1 / e -~ —
- ~ ~ \ / e — —
~ ~ ~ AN S / e — —
— ~ ~ N\ T / - - -

Note that there appears to be a vertical asymptote at ) =0.
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3. Slope Fields Graphically (MCQs)

For these problems, one would sketch a solution and decide from among the
options based on what was learned about families of functions in PreCalulus.

L. Polynomials

e Defn: "An expression containing no other operations than addition,
subtraction, and multiplication performed on the variable."

e Means: any equation of the form y=qa,x"+a,_ x""+...+4a,, where n is a
non-negative integer.
e Most Important Traits: Zeros (x-intercepts) and Extreme Points.

P /
LR YIN
A
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11. Rationals

e Defn: "An expression that can be written as the ratio of one polynomial to
another."

e Means: an equation with an x in the denominator.
e Most Important Traits: Zeros vs. VAs vs. POEs and End Behavior.

T 54
i
; + + + + + + 5 4 3 H 3 n 4 3 1 1 3 4
,
,

III.  Radicals (Irrationals)

e Defn: "An expression whose general equation contains a root of a variable
and possibly addition, subtraction, multiplication, and/or division."

e Means: An equation with an x in a radical.

e Most Important Traits: Domain and Extreme Points.

A/
T |
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IV.  Exponentials
e Defn: "A function whose general equation is of the form y=a-b*."

e Means: there is an x in the exponent.
e Most Important Traits: Extreme Points and End Behavior.

44

2+

‘ ‘ /

} } } |

/r’/ B 2\ / 2 3
. . s s ., . .
t T t t t } ; t

-4 -2 2 4

V.  Logarithmic Functions

Defn: "The inverse of an exponential function."

e Means: there is a Log or Ln in the equation.

e Most Important Traits: Domain, VAs, and Extreme Points.

4

- -
+
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VI.  Trigonometric Functions

Defn: "A function (sin, cos, tan, sec, csc, or cot) whose independent variable

represents an angle measure."

Means: an equation with sine, cosine, tangent, secant, cosecant, or cotangent in it.
e Most Important Traits: VAs, Axis Points, and Extreme Points.

[

2 z o

N N VAW
R TR //‘// 3//

| | Co ]

y=sinx y=Cosx y=tanx

C

C
-

C
=
=

\ | /\ | 2 2/\4\ | s \ A \
\\ J/ \ / | l \ \ \ |
y=0Cscx y=secx y=cotx

Finding the solution equation entails looking at the pattern of the slopes and
matching it against the graphs we know.
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Ex 4 Which of the following equations might be the solution to the slope field

shown in the figure below?
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T = O e ——
AR I =
e =, S SOOI NN
////////////////////// ) PP P
e e e e T e T n |
1 o) \\\\\\\)\\\\\\\\\ o o
PPl P Pl Pl [e)
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|||||||||||||||||||||| 7
O B
= ]
- -y
2
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x*—4x?
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Ex 5 Which of the following equations might be the solution to the slope field
shown in the figure below?

A
S S SN S S S S S S S
Lo,
N
CANEERERNR IRANEROE
SRR AR AR RN
R
N N, Y .
AU CENRRNNN
DYNIIIINVRININNNMMY

—Se€CX

y:

4x—x* ¢) y=—cosx d)

y:

b)

x*—4x?

y:

a)

Tracing along the slope segments we see one solution curve is:

JIIII
S S S S S A

s
S S

L e e e

e e e e i e e e

e e e it e i i i i

PP PP P Al S D A e

S S S S

[ ]

/ST

[ R]

|
=}
=
=

ARRRRRRRR
NN NNNNNANN

N N N N N

———, m—— o, o, e, e, e, e, P, e e, e, e, e, e, e,

B

SONONONONNONN NN

AN

VNI

MR

—Se€CX

This 1s a secant curve, so the answeris d) y
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Ex 6 Which of the following equations might be the solution to the slope field
shown in the figure below?

a)

y=x*—4x?

NN N NS -
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NN NN N
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oSS S S
B S S S
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-
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////////s/—
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NN N N N
NN N NN N
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NN NN NN
S SNONONONONON N
NN NN
mNENA NN
SO S

NN~

b) y=4x-x* ¢)

TN N N N N N ™~ T

SN N N N NN
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NN N N N NN
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NN NN N
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S
- S
- S
s S S S
—/////////—

PR S

Tracing along the slope segments we see one solution curve is:
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- S =
- S =

S =
e S -

~\\\\\T\—
SN NN NN N e
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~\\\\\\\\\—

~ ~ N\ NN~

—%////////f
- S S =
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—/////////—

- e s P -

This 1s a negative cosine wave, so the answerisc) y=-cosx
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4. Slope Fields Numerically (MCQs)

Let’s summarize what we know about slopes of lines in terms of numbers:

1. Horizontal lines have ﬂ =0
dx

2. Vertical lines have % =dne
X

3. Lines with positive slopes go up from left to right
4. Lines with negative slopes go down from left to right

Two other facts are apparent from viewing a slope field and its differential
equation:

5. If all Dashes in each column are // to each other, then ? has no y.
X
6. If all Dashes in each row are // to each other, then % has no x.
X

So, consider this slope field:

The differential equations that yields this would not have a y in the equation
because of the segments being parallel in. each column.
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Ex 7 Which of the following slope fields matches % =3y—4x.
x

\ N\ ~ ~ T - - 7 /7

\ \ AN ~ - 7 /7 /

\ \ AN N s - 7/ / /

\ \ \ \ Ve / / I

I / / /7 N\ \ \ \

/ / /7 - ~ \ \ \

/ /7 7 - ~ N \ \
b) 7/ Ve - - -~ ~ N N
[ T T TR R B B
[T Iz

[ T R R S A N T

I Y T T SN S T
T
[ Y D S T N
IRV T T
R IR

C) d) = v\ [ I |

a) and c) have all slopes in each column parallel to one another, therefore, there is

no y in those equations. Neither can be the % =3y—4x.
x

b) appears to have horizontal slopes at x =0, but % =3y—4x does not always
X

equal 0 at x=0. b) cannot be the slope field for % =3y—4x.
X

Therefore, by process of elimination, the correct answer is d).
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Ex 8 Which of the following slope fields matches % =e .
X

b) / 7 - - -~ ~ N N

Lo o=

Lo [

(N /N

o N

At LI S B

I e [ N

I 7N [ T

[N [ T

c) A [ N R

% — ¢ has no y in the equation, therefore, the segments in each column must be
x

parallel to each other. The answer must be either a) or ¢).

In ¢), the slopes at x =4 are negative, but % = ¢ ¥is positive.
X

Again, by process of elimination, the correct answer is a).
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Ex 9 Which of the following slope fields matches % =X9

Xy
N\ N ~ ~ T - - 7 7/
\ N N ~ - 7 7/ /
\ NN S s 7/ /
\ \ \ N 7/ / / 1
4 3 }I 3 4 X\
1 / /! 7/ NN \ \
/ / /7 - A NN \
/ /7 ' - ~ N N \
b) / e - - ~ ~ N AN
| | | | rr =\
| | | | I 7\ \
| | | [ / N\ |

| I/ N\ | | | |
| /I N\ | | | |
C) d) I =\ | | | | |
% =2 has both x and v in it, therefore there cannot be parallel slopes in columns
Xy
or rows. A) and c) must be wrong.
& _x

=0 when x =0, so the answer must be B
dx y
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2.7 Free Response Homework

1. A slope field for the differential equation y'= y(1 — % yzj 1s shown.

(a) Sketch the graphs of the solutions that satisfy the given initial conditions.
1) y(0)=1 (i) y(0)=-1 (i) y(0)=-3 (i) y(0)=3

| | | I =t | | | |

Match the differential equation with its slope field (labeled I-1V). Give reasons for
your answer.

2.9 _

3 dy _ dy _
T y—1

4. 2L =% —x? 5. =33
dx Yoo dx yoox

I - » 1 I - v

_ _ Y A S A A
— | A A A A AN
| \ | 7/ 7/ 7/ 7/ »” / 7/ / 7/
I 1 - - - — 7 - - - -
b+ ; oy
o | S S N
o | LS S O e W
I \ I L U U
- _ 4

I / v ' v !
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6. Use the slope field labeled I (for exercises 2-5) to sketch the graphs of the
solutions that satisfy the given initial conditions.

(a) y(0)=1 (b) y(0)=0 (c) y(0)=-1

7. Sketch a slope field for the differential equation. Then use it to sketch three
solution curves.

y'=1l+y

8. Sketch the slope field of the differential equation. Then use it to sketch a
solution curve that passes through the given point.

y‘:y_Zx; (1,0)

9(a). A slope field for the differential equation y'=y(y-2)(y-4) is shown. Sketch

the graphs of the solutions that satisfy the given initial conditions.
(1) y(0)=-0.3 (1) y(0)=1 (11) y(0)=3 (iv) y(0)=423

9(b). If the initial condition is y(0) = ¢, for what values of c is Zlim y(¢) finite?
—oo
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Which of the following differential equations corresponds to the slope field

shown in the figure below?

2.7 Multiple Choice Homework

1.
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Which of the following differential equations corresponds to the slope field

shown in the figure below?

2.



=5xy

dy
dx

b)
Which of the following equations might be the solution to the slope field

Which of the following differential equations corresponds to the slope field
shown in the figure below?

shown in the figure below?

3.

4,
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6.

Which of the following equations might be the solution to the slope field

shown in the figure below?
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a)  y=dx-x° b) y= y=secx

d x=-y*

7.  Which of the slope field shown below corresponds to % =29
X X
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Which of the slope field shown below corresponds to % = yx?
X
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Which of the slope field shown below corresponds to || = e ?
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10. Which of the slope field shown below corresponds to y=secx?

a)
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AP Calculus BC Name

Anti-Derivative Practice Test

1. Which of the following statements are true?
5
I J((x3+x)4x4+2x2—5)dx=%(x4+2x2—5)/‘+c
) 1
5 6 __1 6
I1. J(x sin x )dx— 6cosx +c

111. jcscxdxz ln‘cscx+cotx +c

a) I only b) IT only c) III only
d) I and II only e) IT and III only
x—2
2 Z “dx=
jx—ld
a) —Injx—1|+c b)  x+Injx—1Il+c o x—Injx—1|+c
d) x—~x—14+c¢ e) x+x—14+c¢
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A

sinxcos®x and if y = 1 when x =7, what is the value of y when x =

dx
0?
a) -3
b) -2
c) 1
d) 2
e) 3
4. fol—xzdx

a2 201 232
a) —(1 );) +c b) —(1—x2)3/2+c ) (! 3x) +c

YA (1 32
H (13x) s o U 3x) p
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shown in the figure below?

5.

=

)

(3

)

o

@)

@

)

= 7 7

8 -/ /////s/////// /) -
4 A B NN NN NN NN P
g == LANNSEISNNN S
W e A NN NN N N R
= =/ PNNNINANN |
S e /AN e
2 /AN e
S e /NN S
S NN S
o | " . . [/, |o | ./ , A

) T R I

R R W
5 A N
= — SN S S
rm \\\\\ — S
mb \\\\\ — S
T E e
HO \\\\\\ \\\\M.n T T T T e e e
fm \\\\\\\ \\\,\ T T i e e e e
o= L 2

=

e

(.

o

<=

2

=

dy _,_Y
dx X

b)

210



Which of the following equations might be the solution to the slope field

shown in the figure below?

6.

T T T T T T T e o o o o e

LSS
AR AR RS AR R AR R RN
SO RN
SO NN RO
SRR
T rrrrr T 1T 1T T T T T
LSS S S S SN S S SSSSSSS

\\\\\\\\\\w

P e

S S WO O

y=4x*—x°

c)

x> -4x

y:

b)

y=4x-x>

a)

SeCx

y:

e)

x*=15x°

y:

d)

Identify is the first mistake (if any) in this process:

7.

Step 1:

Step 2:

Step 3:

Step 4:

Step 3

c)

Step 2

b)

Step 1

a)

There 1s no mistake.

e)

Step 4

d)
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2 3—4r-3
' 5173

jdt
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cotx

10. J[3x5 + CsC” x —x%sc(x“)jdx

11. J(x\/—3x2 +17) dx

12. The acceleration of a particle is described by a(r)=48¢*—18¢+6. Find the
distance equation for x(z) if v(1) =1 and x(1) = 3.
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13.  Given the differential equation, dy _y=2
dx x+1
a. On the axis system provided, sketch the slope field for the % at all points
X

plotted on the graph.

° ° 3l o °

o ° 2@ ° o

° ° 10 ° o

——t—e—+—&—+—0—+—0 06—
-2 2
® ] -1@ e ]

b. If the solution curve passes through the point (0, 0), sketch the solution
curve on the same set of axes as your slope field.

c.  Find the equation for the solution curve of % =(y—2)(x+1) given that
»(0)=5
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Chapter 2 Answer Key

2.1 Free Response Answers

[E—
.

2x3 = x*+3x+c¢

3. 2Wxt +e
2

5. —x6+§x4+C
37 g

7. %x%—IZx%+c

0. %x4+x3+%x2+x+c
3 /2+5x57 12472 + ¢

1 5
13. =x3+=x? )
3x +2x +6x+c

1 7
15. 1Ox —gx +2x——ln‘x‘+c

1 10
17. +—79 "+ +
5y 3 V' +5y+c

19, flx)=x"=3x>+3x+2

21. f(x)z%ﬁ—% 2-2x +3—35

I SR 2
23. x(t)_ﬁt -3t +262 4244
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10.

12.

14.

16.

18.

20.

22.

1
Zx4+x3—x2+4x+c

8
gxs—x4+3x3+x2+x+c

4x3+%x2—8x+c

%xz 22 + 3In|x|+c

?X3—12x2 +9x+c¢

242 —2x 2 _3x 4
%xz —4x+7ln‘x‘ +c

xX2+x*+x+c

3 28
6,24 3
2t +4l‘ + 3t+7l‘+C

Lagla Lo s 37
4x+3x 2+3x B

f(x)=3x"=2x° +4x> —13x+11



2.1 Multiple Choice Answer Key

1.

D 2. A 3. A

2.2 Free Response Answer Key

11.

13.

15.

17.

19.

21—0(5x+ 3)4 +c

%x7+%x4+x+c

é(2x2 + 3)% +c

% 1+x* +c¢

lx6 +lcos 3x+le"2 +c
6 3 2

1.
—=Smx- +c

5

%tan(3x— l+c

%tansx-l-c

1
e+

6

%an (x2 +1)+c
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10.

12.

14.

16.

18.

20.

as(xas) e

+c

—10(5x+2)’

%(x2 +2x+ 3)% +c

%tanx3+%ln4x+c

—%cos (7x+1)+c
—2cosJx+c¢
%an x+c

—%cse2 2x+c

Zeﬁ+c



21. —zcot%x+c 22. —lsin21+c
3 2 X

23. %tan_1 X +c 24. x+c

2.2 Multiple Choice Answer Key

1. C 2. E 3. D 4. A 5. E 6.

7. A 8. D 9. C 10. A 11. D 12.
13. D

19. C

2.3 Free Response Answer Key

. y=k 2. =2 3. y=kJx+1
—x +C
7
1 7
4 = 5 =| — 3—3 2 C
Y= San x d ( (=3 j
! 1 %
6 y:i§1/1n|5tanx+C| 7 y=(—x4—2j
7 y=z4—e*+C 8 y=sec‘1(%+x+CJ
1 1
9 =+ 10 = .
Y c—4x? Y c—sinx
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11.

13.

15.

17.

19.

21.

23.

25a)

25¢)

26a)

26¢)

27a)

27c¢)

v=—1+ke

12
2045t

%
0=(%r+r%+c}

2

Yy=Nx

y=2+

+1

4
e’ 3

y=—\/2e"2 -1

1

y=5e?

y=ln(

dzy _

Adx?

y:

dzy
Ax?

y=2e

x2+cosx

sinx+C)

—2y2+(6-2x)%2y3

1

x2—6x =21

—y[x2+2x+2]

x2+x

(y +2)*(6x) - 9x*

dzy _

dx?

(y+2)3

3
y=x/2—1

12.

14.

16.

18.

20.

22.

24.

y=tan(x—1)
u=—t*+tans +25
y=cos™' (cosx—1)

y=Te*

25b) Maximum

26b) Minimum

27b) Neither
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28a) — =((x - 1)2+ 1)(y +2)

dx

1
—x“=x+0.5

28¢c) y= —2+e?

2.3 Multiple Choice Answer Key

1. B 2. C 3. C

2.4 Free Response Answer Key

8422 (a2
1. 3(4 x)2+5(4 x)2+c

2. i( 3+4)%—§( 3+4)%+c

15
3. l(2x+3)+zln\2x+3|+c
4 4
1 141 13
4, g(x2+1) —%(x2+1) +c

5 31 4
5. 5(3+lnx) —Z(3+lnx) +c

6. —%(4—\/5)3/%%(4—\/})5/%

28b) Minimum

7. i(x2+4)5—(x2+4)4+§(x2+4)3+c

10 3
o) 7, 8 s/ 8 3
8. 7(x+ 3)/2—§(x+ 3)/2+§(x+ 3)/2+c
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9. —(2t+4)7—1(2f+4)6+c

28 4
1 2 4
10. 45(32 1) —5(32—1) +c

1. %()’3+4)%—%(y3+4)%+c

12, = %(w2 +4) —4(w? +4)+16In(w? +4)+c

130 (1) 2o 1) 2 A1) e

14. 4(x +1)/2+8(x4+1)_%+c

3 A% 1%
15. 7(x 1)73 4(x 1)3+c

t6. -20(4-x)24+2

3 (4—x)%+c

5

2 X 52 2
17 e +1) =S (er+1) " +e

2.4 Multiple Choice Answer Key

2.5 Free Response Answer Key
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—%cos3x+%cossx+c 2. ésinsx—%sin7x+ésin9x+c

%sin%c—%sin5 x+;sin7x—ésin9x+c

—%0057 x+%cos9 x—ﬁcos“xnL c

—lcos6x+c 6. —sin6x—lsin8x+isin'0x+c
6 6 4 10
%x—%sin4x+c 8. %x+%sm4x+%sm32x+c

2.5 Multiple Choice Answer Key

2.6 Free Response Answer Key

étan6x+c 2. étan9x+%tan7x+%tan5x+c
f—lsec“x—%sec9x+%sec7x—%seosx+c 4, %tan7x+c
%tan8x+%tan6x+%tan4x+c 6. —%cot6x+c

1csc7x+20505x— 1csc3)c+c
7 5 3

—lcsc11 x+2csc9 x—lcsc7 x+c¢
11 9 7
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9. —%cotsx—%cot7x+c 10. —%cotzx—%cot4x+c

2.6 Multiple Choice Answer Key

1.

-
2. v 3. I 4. III 5. II
6. 7
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Chapter 2 Practice Test Key
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D 2. B 3. C 4.

7. B
30, 125, 9 1
8. A= 24
500 T25t st
_ 23 B
9. __§( —1) +c
10. lx6 + gCotx —lln‘cscx“—cotx4 +c
6 4
1 2 52
11. —5(—3x +17) +e
12, x(t)=4r* -3 +3> - 121 +8
13a & b.
o, %; 30 > °
- -0~ Lc:of -0— -
i 4 4 i N °
p ¢ 3
o] C\ 1§ \\\ \9\
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